μ Kummer: efficient hyperelliptic signatures and key exchange on microcontrollers

<u>Joost Renes</u>¹ Peter Schwabe¹ Benjamin Smith² Lejla Batina¹

¹Digital Security Group, Radboud University, The Netherlands

²INRIA and Laboratoire d'Informatique de l'École polytechnique (LIX), France

18th August 2016

- Introduction
- High level signature and key exchange schemes
- Jacobian and Kummer arithmetic
- Implementation details
- Results and comparison

- First software-only implementation of hyperelliptic-curve cryptography on microcontrollers (AVR ATmega and ARM Cortex M0)
- First implementation of a signature scheme based on a Kummer surface
- Significant improvement over state-of-the-art in terms of speed, size and stack usage

Software in the public domain. Available at

```
http://www.cs.ru.nl/~jrenes/
```

Genus	g = 1	g = 2
Curve	Elliptic curve <i>E</i>	Hyperelliptic curve ${\cal E}$
Cryptographic group	Points	Jacobian
Kummer	$E/\{\pm 1\}$	$\mathcal{K} := \mathcal{J}/\{\pm 1\}$

Genus	g = 1	g = 2
Curve	Elliptic curve <i>E</i>	Hyperelliptic curve ${\cal E}$
Cryptographic group	Points	Jacobian
Kummer	$E/\{\pm 1\}$	$\mathcal{K} := \mathcal{J}/\left\{\pm 1 ight\}$

Genus	g = 1	g = 2
Curve	Elliptic curve <i>E</i>	Hyperelliptic curve ${\cal E}$
Cryptographic group	Points	Jacobian
Kummer	$E/\{\pm 1\}$	$\mathcal{K} := \mathcal{J}/\left\{\pm 1 ight\}$

Operations

DBL: $P \mapsto [2]P$ ADD: $P, Q \mapsto P + Q$

Two main use cases:

- Key exchange: relies on scalar multiplication $k, P \rightarrow [k]P$
- Signatures: relies on scalar multiplication and addition

Operations on *J* are hard to make fast and constant-time!

Genus	g = 1	g = 2
Curve	Elliptic curve <i>E</i>	Hyperelliptic curve ${\cal E}$
Cryptographic group	Points	Jacobian
Kummer	$E/\left\{\pm1 ight\}$	$\mathcal{K} := \mathcal{J}/\left\{\pm 1 ight\}$

• Corresponds to $(x, y) \mapsto x$

Not a group. Use x-only operations

xDBL: $x_P \mapsto x_{[2]P}$ xADD: $x_P, x_Q, x_{P\pm Q} \mapsto x_{P\mp Q}$

- Scalar multiplication via the Montgomery ladder (e.g. Curve25519 [Ber06])
- Main use case: key exchange
- ▶ No signatures (e.g. Ed25519 [Ber+12])

Genus	g = 1	g = 2
Curve	Elliptic curve <i>E</i>	Hyperelliptic curve ${\cal E}$
Cryptographic group	Points	Jacobian
Kummer	$E/\left\{\pm1 ight\}$	$\mathcal{K} := \mathcal{J}/\left\{\pm 1 ight\}$

Not a group. Use operations

xDBL: $x_P \mapsto x_{[2]P}$ xADD: $x_P, x_Q, x_{P\pm Q} \mapsto x_{P\mp Q}$

- Scalar multiplication via the Montgomery ladder
- Main use case: key exchange
- No signatures (need Jacobian)

The situation in short:

- $\blacktriangleright \ E \leftrightarrow \mathcal{J}$
 - ► Key exchange ✔
 - Signatures
- $\blacktriangleright E/\{\pm 1\} \leftrightarrow \mathcal{K}$
 - ► Key exchange ✔
 - Signatures X

The situation in short:

- $\blacktriangleright \ E \leftrightarrow \mathcal{J}$
 - ► Key exchange ✔
 - Signatures
- $\blacktriangleright E/\{\pm 1\} \leftrightarrow \mathcal{K}$
 - ► Key exchange ✔
 - Signatures X

New result [CCS16]; use \mathcal{K} to do fast signatures on \mathcal{J} :

$$\begin{array}{ccc} \mathcal{J} & - & \mathcal{J} & P - - & - & \sim [k]P \\ \downarrow & \uparrow & \downarrow & \uparrow \\ \mathcal{K} \longrightarrow \mathcal{K} & & x_P \longrightarrow (x_{[k]P}, x_{[k+1]P}, x_P) \end{array}$$

PpR: "Project-pseudomultiply-Recover"

- On larger platforms speed records are challenged by Kummer surface implementations [CL15; Ber+14]
- Speed records for 128-bit secure key exchange and signatures on microcontrollers held by elliptic-curve-based schemes

Two interesting questions:

Q: How well do Kummer-based key exchange schemes perform on microcontrollers?

- A: Probably well, but never implemented

Q: How do Kummer-based signatures schemes perform?

- A: Not clear

- ▶ Public generator P ∈ J, 512-bit hash function H, 256-bit secret key d, message M
- Three main functions
 - keygen: $(d'||d'') \leftarrow H(d)$ $Q \leftarrow [16d']P$ sign: $(d'||d'') \leftarrow H(d)$ 2 $r \leftarrow H(d''||M)$ $(\mathbf{S} \ R \leftarrow [r]P)$ 4 $h \leftarrow H(R||Q||M)$ 5 $s \leftarrow r - 16h_{128}d' \pmod{\#\mathcal{J}/16}$ **6** $\sigma \leftarrow (h_{128}||s)$ verify: **1** $T \leftarrow [s]P + [h_{128}]Q$ 2 $g \leftarrow H(T||Q||M)$ 3 $g_{128} \stackrel{?}{=} h_{128}$

- ▶ Public generator P ∈ J, 512-bit hash function H, 256-bit secret key d, message M
- Three main functions
 - keygen: (d'||d'') \leftarrow H(d) **2** $Q \leftarrow [16d']P$ (!) Elements of \mathcal{J} sign: $(d'||d'') \leftarrow H(d)$ 2 $r \leftarrow H(d''||M)$ **3** $R \leftarrow [r]P$ (!) Elements of \mathcal{J} 4 $h \leftarrow H(R||Q||M)$ **5** $s \leftarrow r - 16h_{128}d' \pmod{\#\mathcal{J}/16}$ 6 $\sigma \leftarrow (h_{128}||s)$ verify: **1** $T \leftarrow [s]P + [h_{128}]Q$ (!) Elements of \mathcal{J} $\bigcirc g \leftarrow H(T||Q||M)$ 3 $g_{128} \stackrel{?}{=} h_{128}$

- ▶ Public generator P ∈ J, 512-bit hash function H, 256-bit secret key d, message M
- Three main functions
 - keygen: (d'||d'') \leftarrow H(d) **2** $Q \leftarrow [16d']P$ (!) Scalarmult through \mathcal{K} via PpR sign: $(d'||d'') \leftarrow H(d)$ 2 $r \leftarrow H(d''||M)$ **3** $R \leftarrow [r]P$ (!) Scalarmult through \mathcal{K} via PpR **4** $h \leftarrow H(R||Q||M)$ 6 $\sigma \leftarrow (h_{128}||s)$ verify: 1 $T \leftarrow [s]P + [h_{128}]Q$ (!) Scalarmult through \mathcal{K} via PpR 2 $g \leftarrow H(T||Q||M)$

$$\bigcirc g_{128} \doteq h_{128}$$

- ▶ Public generator P ∈ J, 512-bit hash function H, 256-bit secret key d, message M
- Three main functions
 - keygen: $(d'||d'') \leftarrow H(d)$ $Q \leftarrow [16d']P$ sign: $(d'||d'') \leftarrow H(d)$ 2 $r \leftarrow H(d''||M)$ $(3) R \leftarrow [r]P$ 4 $h \leftarrow H(R||Q||M)$ **5** $s \leftarrow r - 16h_{128}d' \pmod{\#\mathcal{J}/16}$ **6** $\sigma \leftarrow (h_{128}||s)$ (!) Compressed to 384 bits by sending h_{128} verify: **1** $T \leftarrow [s]P + [h_{128}]Q$ (!) Half-size scalar multiplication $\bigcirc g \leftarrow H(T||Q||M)$ 3 $g_{128} \stackrel{?}{=} h_{128}$

- ▶ Public generator P ∈ J, 512-bit hash function H, 256-bit secret key d, message M
- Three main functions
 - keygen: (d'||d'') \leftarrow H(d) **2** $Q \leftarrow [16d']P$ (!) Compression of Q sign: $(d'||d'') \leftarrow H(d)$ 2 $r \leftarrow H(d''||M)$ **3** $R \leftarrow [r]P$ (!) Compression of R 4 $h \leftarrow H(R||Q||M)$ 5 $s \leftarrow r - 16h_{128}d' \pmod{\#\mathcal{J}/16}$ 6 $\sigma \leftarrow (h_{128}||s)$ verify: 1) $T \leftarrow [s]P + [h_{128}]Q$ (!) Compression of T 2 $g \leftarrow H(T||Q||M)$ 3 $g_{128} \stackrel{?}{=} h_{128}$

- Public generator $P \in \mathcal{K}$, 256-bit secret key d
- One main function
 - dh_exchange:

 $\bigcirc Q \leftarrow [d]P$

- Public generator $P \in \mathcal{K}$, 256-bit secret key d
- One main function
 - dh_exchange:
 - **1** $Q \leftarrow [d]P$ (!) Only on \mathcal{K}

- Public generator $P \in \mathcal{K}$, 256-bit secret key d
- One main function
 - dh_exchange:

1 $Q \leftarrow [d]P$ (!) Both keygen and exchange

Building blocks: Jacobian & Kummer

• Finite field
$$\mathbb{F}_q$$
 with $q = 2^{127} - 1$

 \blacktriangleright The Gaudry-Schost curve ${\cal C}$ is a genus 2 hyperelliptic curve

$$\mathcal{C}: Y^2 = X(X-1)(X-\lambda)(X-\mu)(X-
u),$$

for constants $\lambda, \mu, \nu \in \mathbb{F}_q$

- Jacobian $\mathcal{J}_{\mathcal{C}}(\mathbb{F}_q)$
- Kummer surface $\mathcal{K}_{\mathcal{C}}(\mathbb{F}_q) := \mathcal{J}_{\mathcal{C}}(\mathbb{F}_q) / \{\pm 1\}$

Function	Domain & Range	Μ	S	m _c	а	s	
ADD	$\mathcal{J}_\mathcal{C} o \mathcal{J}_\mathcal{C}$	28	2	0	11	24	0
Project	$\mathcal{J}_{\mathcal{C}} o \mathcal{K}_{\mathcal{C}}$	8	1	4	7	8	0
xDBLADD	$\mathbb{Z} imes \mathcal{K}_{\mathcal{C}} o \mathcal{K}_{\mathcal{C}}^2$	7	12	12	16	16	0
Recover	$\mathcal{J}_{\mathcal{C}} imes \mathcal{K}^{3}_{\mathcal{C}} o \mathcal{J}_{\mathcal{C}}$	77	8	0	19	10	1

Building blocks: finite-field arithmetic

AVR ATmega

- Family of 8-bit microcontrollers
- ▶ Represent elements of $\mathbb{F}_{2^{127}-1}$ with 16 8-bit words (1 bit left)
- 128×128-bit multiplication (bigint_mul) and squaring (bigint_sqr) from [HS15]
 - 2-level Karatsuba multiplication and 1-level Karatsuba squaring
- ▶ Reduction (bigint_red) based on $2^{128} \equiv 2 \pmod{2^{127} 1}$
- Combined into field multiplication (gfe_mul) and squaring (gfe_sqr)
- Fast 16×128-bit multiplication by constant (gfe_mulconst)
- ▶ Inversion (gfe_invert) based on $g^{-1} = g^{2^{127}-3}$

Building blocks: finite-field arithmetic

ARM Cortex M0

- 32-bit microcontroller
- ▶ Represent elements of $\mathbb{F}_{2^{127}-1}$ with 4 32-bit words (1 bit left)
- 128×128-bit multiplication (bigint_mul) and squaring (bigint_sqr) from [Dül+15]
 - 2-level Karatsuba multiplication and 2-level Karatsuba squaring
- ▶ Reduction (bigint_red) based on $2^{128} \equiv 2 \pmod{2^{127} 1}$
- Combined into field multiplication (gfe_mul) and squaring (gfe_sqr)
- Fast 16×128-bit multiplication by constant (gfe_mulconst)
- ▶ Inversion (gfe_invert) based on $g^{-1} = g^{2^{127}-3}$

AVR ATmega (scalarmult)

	Imp.	Object	Cycles	Code size	Stack
DH	[LWG14]	256-bit curve	pprox 21078200	14 700 bytes	556 bytes
S,DH	[WUW13]	NIST P-256	pprox 34 930 000	16 112 bytes	590 bytes
DH	[HS13]	Curve25519	22 791 579	n/a	677 bytes
DH	[Dül+15]	Curve25519	13 900 397	17 710 bytes	494 bytes
DH	This work	$\mathcal{K}_{\mathcal{C}}$	9 513 536	pprox 9 490 bytes	99 bytes
S	This work	Jc	9 968 127	pprox 16 516 bytes	735 bytes

AVR ATmega

	Imp.	Object	Cycles	Code size	Stack
DH	[LWG14]	256-bit curve	pprox 21078200	14 700 bytes	556 bytes
S,DH	[WUW13]	NIST P-256	pprox 34 930 000	16 112 bytes	590 bytes
DH	[HS13]	Curve25519	22 791 579	n/a	677 bytes
DH	[Dül+15]	Curve25519	13 900 397	17 710 bytes	494 bytes
DH	This work	$\mathcal{K}_{\mathcal{C}}$	9 513 536	pprox 9 490 bytes	99 bytes
S	This work	$\mathcal{J}_{\mathcal{C}}$	9 968 127	pprox 16516 bytes	735 bytes

Key exchange: Reducing number of clock cycles by 32%, almost halving code size and reducing stack usage by about 80%

AVR ATmega

	Imp.	Object	Cycles	Code size	Stack
DH	[LWG14]	256-bit curve	≈ 21078200	14 700 bytes	556 bytes
S,DH	[WUW13]	NIST P-256	≈ 34930000	16 112 bytes	590 bytes
DH	[HS13]	Curve25519	22 791 579	n/a	677 bytes
DH	[Dül+15]	Curve25519	13 900 397	17 710 bytes	494 bytes
DH	This work	$\mathcal{K}_{\mathcal{C}}$	9 513 536	pprox 9 490 bytes	99 bytes
S	This work	$\mathcal{J}_{\mathcal{C}}$	9 968 127	≈16516 bytes	735 bytes

 $\underline{Signatures:}$ Reducing number of clock cycles by 71%, increasing stack usage by 25%

AVR ATmega (full signatures)

Imp.	Object	Function	Cycles	Stack
[NLD15]	Ed25519	sig. gen.	19 047 706	1473 bytes
[NLD15]	Ed25519	sig. ver.	30776942	1226 bytes
This work	$\mathcal{J}_{\mathcal{C}}$	sign	10 404 033	926 bytes
This work	$\mathcal{J}_{\mathcal{C}}$	verify	16 240 510	992 bytes

Almost half the number of cycles, decrease stack usage (code size not reported)

ARM Cortex M0 (scalarmult)

	Imp.	Object	Clock cycles	Code size	Stack
S,DH	[WUW13]	NIST P-256	pprox 10 730 000	7 168 bytes	540 bytes
DH	[Dül+15]	Curve25519	3 589 850	7 900 bytes	548 bytes
DH	This work	$\mathcal{K}_{\mathcal{C}}$	2 633 662	pprox 4 328 bytes	248 bytes
S	This work	$\mathcal{J}_{\mathcal{C}}$	2 709 401	pprox 9 874 bytes	968 bytes

ARM Cortex M0

	Imp.	Object	Clock cycles	Code size	Stack
S,DH	[WUW13]	NIST P-256	≈ 10730000	7 168 bytes	540 bytes
DH	[Dül+15]	Curve25519	3 589 850	7 900 bytes	548 bytes
DH	This work	$\mathcal{K}_{\mathcal{C}}$	2 633 662	pprox 4 328 bytes	248 bytes
S	This work	$\mathcal{J}_{\mathcal{C}}$	2 709 401	pprox 9874 bytes	968 bytes

Key exchange: Reducing number of clock cycles by 27%, halving code size and stack usage

ARM Cortex M0

	Imp.	Object	Clock cycles	Code size	Stack
S,DH	[WUW13]	NIST P-256	≈ 10730000	7 168 bytes	540 bytes
DH	[Dül+15]	Curve25519	3 589 850	7 900 bytes	548 bytes
DH	This work	$\mathcal{K}_{\mathcal{C}}$	2 633 662	pprox 4 328 bytes	248 bytes
S	This work	$\mathcal{J}_{\mathcal{C}}$	2 709 401	pprox 9874 bytes	968 bytes

Signatures: Reducing number of clock cycles by 75%, increase in code size and stack usage

Thanks for your attention!

References I

- [Ber+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe and Bo-Yin Yang. "High-speed high-security signatures". In: J. Cryptographic Engineering 2.2 (2012). https://cryptojedi.org/papers/#ed25519, pp. 77–89.
- [Ber+14] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange and Peter Schwabe. "Kummer Strikes Back: New DH Speed Records". In: Advances in Cryptology – ASIACRYPT 2014. Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8873. LNCS. https://cryptojedi.org/papers/#kummer. Springer, 2014, pp. 317-337.
- [Ber06] Daniel J. Bernstein. "Curve25519: New Diffie-Hellman Speed Records". In: Public Key Cryptography - PKC 2006, 9th International Conference on Theory and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings. Ed. by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias and Tal Malkin. Vol. 3958. Lecture Notes in Computer Science. Springer, 2006, pp. 207–228. DOI: 10.1007/11745853_14. URL: http://dx.doi.org/10.1007/11745853_14.

References II

- [CCS16] Ping-Ngai Chung, Craig Costello and Benjamin Smith. "Fast, Uniform Scalar Multiplication for Genus 2 Jacobians with Fast Kummers". In: Selected Areas in Cryptography - SAC 2016, 23rd Conference on Selected Areas in Cryptography. https://eprint.iacr.org/2015/983. 2016.
- [CL15] Craig Costello and Patrick Longa. "FourQ: Four-Dimensional Decompositions on a Q-curve over the Mersenne Prime". In: Advances in Cryptology – ASIACRYPT 2015. Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9452. LNCS. https://eprint.iacr.org/2015/565. Springer, 2015, pp. 214–235.
- [Dül+15] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof Paar, Ana Helena Sánchez and Peter Schwabe.
 "High-speed Curve25519 on 8-bit, 16-bit and 32-bit microcontrollers". In: Design, Codes and Cryptography 77.2 (2015). http://cryptojedi.org/papers/#mu25519.

References III

- [HS13] Michael Hutter and Peter Schwabe. "NaCl on 8-bit AVR Microcontrollers". In: Progress in Cryptology – AFRICACRYPT 2013. Ed. by Amr Youssef and Abderrahmane Nitaj. Vol. 7918. LNCS. http://cryptojedi.org/papers/#avrnacl. Springer, 2013, pp. 156–172.
- [HS15] Michael Hutter and Peter Schwabe. "Multiprecision multiplication on AVR revisited". In: Journal of Cryptographic Engineering 5.3 (2015). http://cryptojedi.org/papers/#avrmul, pp. 201–214.
- [LWG14] Zhe Liu, Erich Wenger and Johann Großschädl. "MoTE-ECC: Energy-Scalable Elliptic Curve Cryptography for Wireless Sensor Networks". In: Applied Cryptography and Network Security. Ed. by Ioana Boureanui, Philippe Owesarski and Serge Vaudenay. Vol. 8479. LNCS. https://online.tugraz.at/tug_online/ voe_main2.getvolltext?pCurrPk=77985. Springer, 2014, pp. 361-379.

References IV

[NLD15] Erick Nascimento, Julio López and Ricardo Dahab. "Efficient and Secure Elliptic Curve Cryptography for 8-bit AVR Microcontrollers". In: Security, Privacy, and Applied Cryptography Engineering. Ed. by Rajat Subhra Chakraborty, Peter Schwabe and Jon Solworth. Vol. 9354. LNCS. Springer, 2015, pp. 289–309.

[WUW13] Erich Wenger, Thomas Unterluggauer and Mario Werner. "8/16/32 Shades of Elliptic Curve Cryptography on Embedded Processors". In: Progress in Cryptology - INDOCRYPT 2013. Ed. by Goutam Paul and Serge Vaudenay. Vol. 8250. LNCS. https://online.tugraz.at/tug_online/voe_main2. getvolltext?pCurrPk=72486. Springer, 2013, pp. 244-261.